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A(s,0)
As)

= f f p(r,z)27r cos (2sz cos 8)Jy(2msr sin 6) dr dz
= f fp(r,z)F(r,s,z,B) dr dz

va v(a*-z%)12
=4[ 77T o= o) F(r5.2.0) dr dz +

vat+d pv'(a?-2912
f (ppot = PO)F(7,5,2,0) dr dz]
r=

z=ya v(a?-z%)112

Ppais Ppoi» a0d pg are respectively the electron density of the hy-
drocarbon core, the polar region, and the solvent. One gets

A(s,B) va pu(al-z%)'/?
a6 4[ _£= Oj; . (Ppar — Po)F(r,5,2,0) dr dz +

va+d

s (a?-zt)}2
j::o (opor - po)F(r,s,2,8) dr dz -
va ,,(al_zz)l/z
-£=oj:=o (opor = po)F(r,5,2,0) dr dz]

va v(a*-z}12
= 4[ £=0f (ppar - ppol)F(rvs,zsa) drdz +

=0

vatd pv{a?-zY

f (ppol - po)F(r,s,z,ﬂ) dr dZ]
z=0 r=0

with ¥ = (va + d)/(a+ d) and o’ = (a + d)/v.

This is similar to the expression obtained for a sphere; one finds
two terms in the expression of the scattered amplitude: the first
one corresponds to an ellipsoid whose electron density is (ppa; =
Ppol), the second one to an ellipsoid with density (p,o — ).

Guinier and Fournet had given the expression of the form
function of ellipsoids of revolution with axes (R, R, ¥R), electron
density p and volume ¥V

z=0

P(s) = (p — po)?V? j; '/2¢2(21rng(0)) cos 8d6 (A2)

where ¢(u) is the form function of a sphere and g(d) = (cos® 6
+ 12 sin? 6)1/2,

Using this last equation, one obtains eq 3. Two cases must be
considered: oblate or prolate ellipsoids.

(a) Oblate Ellipsoids. The revolution axis is the minor one.
We use as parameter the smaller dimensiona of the hydrocarbon
core, noted /,. When the half-axes become /y,,, {;,;/v and [, /v
for the parafPfinic core (with a volume ¥V, = */37 (I, /v?) and
lpar + 4, /v + d and I, /v + d for the whole particle (with a
volume Voo = */5w(lpar/v + d)*(Lpar + d)).

In this case, v < /.

The form factor of these ellipsoids is then given by

/2
P(S) = J; [Vpar(ppar - ppol)¢(g1(0)27r1pars) + Vpol(ppol -
p0)$(g:(8)27 (I, + d)s)]? cos 6 df (A3)

with g,(8) = (cos? 6 + »? sin? 6)1/2, g,(8) = (cos? § + v'? sin? §)1/2,
and ¥ = y[([p + &)/ (lpa; + vd)].

(b) Prolate Ellipsoids. They are obtained by a rotation around
the major axis. This time, their parameters are (/a, Jars #/par)
for the paraffinic part, (/py, + d, Lay + d, vl + d) for the total
particle with a volume Vi = */37([ps; + d)* (vl + d), and » >
/

. The expression of P(s) (A3) can be used with »* = (vl,, +
&)/l + 4.

Registry No. Sodium OBS, 28675-11-8; 1-pentanol, 71-41-0.

Surface Density of States in the Many-Neighbor Approximation
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The Green function for an infinite chain of atoms is calculated within the framework of the many-neighbor approximation.
The Dyson equation is then used to derive the surface Green function of a semiinfinite chain, where the end atom is perturbed
due to the presence of the surface. Results are presented and discussed for the surface density of states, and the conditions
governing the existence of surface states are investigated.

1. Introduction

The initial calculations of the electronic properties of 1-di-
mensional solids in the many-neighbor approximation (MNA)
were restricted to infinite systems.!”> The MNA is a molecu-
lar-orbital approach in which the nth nearest-neighbor (NN)
interaction is written in the form 8, = 8p™', where 38 is the NN
interaction energy and |p| < 1. The main effect on the bulk-band
structure of including higher order interactions is to cause a
broadening of the allowed bands with increasing p.

Since surface states (SS) of semiinfinite (or finite) crystals
emerge from the band edges, it is clear that they too will be
affected by the presence of MN interactions. However, the large
number of surface boundary conditions, encountered as a result
of the MN interactions, makes the study of such localized states
via the molecular-orbital method an intractable problem. For-
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tunately, a Green function (GF) technique,* involving the use of
the Dyson equation,’ is available, which enables the numerous
boundary conditions to be accommodated with comparative ease.

In the present paper, the GF G, for an infinite crystal is cal-
culated in section 2. G is then used in the Dyson equation to
obtain the surface GF G, for a semiinfinite crystal with a surface
perturbation (section 3). The existence conditions for the SS are
also given in section 3, and the numerical results for the surface
density of states (SDOS) are presented and discussed in section
4. Concluding remarks are made in section 5.

2. Infinite Crystal

For an infinite, 1-dimensional crystal, in the MNA, the energy
spectrum is given by!

(1) Davison, S. G.; Taylor, N. F. Chem. Phys. Lett. 1969, 3, 424.

(2) Davison, S. G. Int. J. Quantum Chem. 1972, 6, 387.

(3) Davison, S. G.; Foo, E. N. Int. J. Quantum Chem. 1976, 10, 867.

(4) Kalkstein, D.; Soven, P. Surf. Sci. 1971, 26, 85.

(5) Economou, E. N. “Green’s Functions in Quantum Physics”, 2nd ed.;
Springer-Verlag: West Berlin, 1983; Solid State Sci. Ser., Vol. 7.
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The Many-Neighbor Approximation
X(k) = (cos ka — p)(1 - 2p cos ka + p?)™! (D

where X(k) = [E(k) — €]/28 is the reduced energy, E(k) being
the energy eigenvalue with wavenumber %, ¢ the 1-electron energy
at each atom, and a the lattice constant. The corresponding GF
for a cyclic crystal of N atoms may be written as

ei(n—m)ka

1
Golmm) = 28 Z;X(k) ~ (cos ka - p)(1 = 2p cos ka + p?)!

2
In the limit, as N — «, the sum in (2) can be replaced by a

contour integral® around the unit circle in the complex plane of
the variable ¢ = /¥ i.e., (2) becomes

_ (e - p) (ot - 1)
Golmm) = ;f 0t = 1)t - 1) dr @)

where
n = [28(2Xp + 1)]™ “)
ty=ax(a- DY« + 1)1/2 (5)
a=(2Xp + 1)'(Xp2 + p + X) (6)

Since (5) shows that
tity, = 1 (7)

the poles at ¢; and ¢, are complex inverse points with respect to
the unit circle. When

Q1+p'sXx<(1-p)" ®)

11 lie on the unit circle, and (8) defines the band of extended states
of an infinite crystal,! which corresponds to a branch cut of
Go(n,m) in the complex X plane. A small positive imaginary part
is included in X, so that Gy(n,m) is defined uniquely for all X.

The contour integral (3) can then be evaluated from the residues
at the poles z = 0 and ¢ = ¢, of the integrand, which lie within
the unit circle, to give

Go(n,m) = 2nps,,,, + tl*™ ©)
where
=-in[(1 - p)™ - XI2{(1 + o) + X]2 (10)

Because the atomic chain is infinite and homogeneous, the GF
is translationally invariant, and can be written as

Go(n,m) = go(n - m) (1mn

The GF is real, when X is real, except within the band of extended
states given by (8), where the DOS expression is®

Do(X,p) = ~="! Im g¢(0) (12)
ie.,
Dy(X.p) = !n[(1 - p) = X1V (1 + o) + X712 (13)

As in the NN situation, the DOS exhibits the same square root
Van Hove singularity at the band edges. This can be understood
in terms of the real-space rescaling analysis of Lavis et al., since
the fixed point controlling the band edges lies in the subspace p
= 0, which is the same as that for the NN model.

3. Surface Green Function

A semiinfinite, 1-dimensional crystal can be formed from an
infinite one by passing a cleavage line between the atoms on sites
m = 0and -1. In second-quantized form, the scattering potential
in the MNA is

(6) Lavis, D. A.; Davison, S. G.; Southern, B. W., to be published.

The Journal of Physical Chemistry, Vol. 90, No. 4, 1986 653

© n-1
V.= _§15n§0(|m—n)(m| + |m)(m - n|) (14)

where
B, = Bp™,

is the resonance integral between nth NN atoms.

The creation of a surface at the end of a semiinfinite crystal
perturbs the electronic environment in the region. The pertur-
bation can be taken into account by changing the site energy from
€ to ¢ for the surface atom at #n = 0, and altering the values of
the MN interactions with the surface atom from 3, to v,, where,
by analogy with (15),

Yp = yo™l, ol <1 (16)

bl <1 (15)

In this case, the surface perturbation potential can be written
as

Vo = 10)(eo = 0l + T (v, = B)(10) (nl + Im) (o) (17)
Combining (14) and (17) leads to the total surface perturbation

potential, which can be expressed as
I/s =

Vet V= (- 6lo)(ol - X 16,,+m(|—ﬂ>(m| + |m)(-n|) -

m=1n=
aﬁn(l—nHOI +lo)(-n) + ;(% = B)(lo) (| + |m){o]) (18)
The Greenian operator for the perturbed semiinfinite crystal
is given by Dyson’s equation® in the form
Gs = GO + GOVsGs (19)

Substituting (18) in (19), noting that G,(m,n) = 0, if m and n
refer to sites on opposite sides of the cleavage line,* and introducing
the matrix notation

g(n) = (n|Gjo) (20)

eventually leads to the surface GF equation for the surface atom
at n = 0, viz,,

Sg(0) + {Ti(p)Z) - &(0)(2, + 1) = 0 (21D

where
TO) = (-0 j=12% 6=p0 (2
S =1~ (¢~ €)go(0) + {[26T1(p) - vT(0)]  (23)

3 = T goma(m)
] (24)
3, = Z=l(~r¢r""1 - Bo™ ) g(m)

After some lengthy algebra, (18) and (19) give the expression

g&(m) = ,"{{1 + (¢ — €)g(0) - T\(p)[Z, + Bg(0)] +
[vTy(0) = BTx(0)1g(0) + 25} + [¥A(o)o™ ! +
BA(p)p™ ] g:(0) (25)

where

\) = [ bl - 1)

o | 6=0, 26
1+ 62 - 26a "p] po (9

which by (5), (6), and (11) becomes

(o - 60)(1 - p8)
A(6) —ZW[W], =p,0 27N

Thus, (27) shows that A(p) = 0 in (25).



654 The Journal of Physical Chemistry, Vol. 90, No. 4, 1986

Davison et al.
o
Q 1 L 2 A § £ L L s L
o . \“ c-
- \
. \
N \
\\ \I
g 10.75 L e
— ~ v .
\0.5 \ e
\
8 | \ \ -
- ~ \\\ \‘
AR D AY Al
~.0.25 \ \
\\\ ‘\ '
Q " AN \ o
Q4 AN s - =B
Y - . *.{0.5) \ e L
N \‘ 8 \ oo
~.0.0 :
o] TN 28 \ | i
3 N \
Seo . “~ \\ “‘
< \
o 0.0 . x B 1(0,75)
“d ~ ~ AN e |k Q
S > \ \ et -
LY 1
0.2 \\\ A N \ °
" - N \ \
N A AN 0 -
o--‘ 0.5 .. . N \
0.78 Tl NN
8 \\::‘:\ R
O. T T - T ~‘:¢:“ §.
0.00 0.25 0.50 0.75 1.00 ° ; I . r .
g -1.5 -1.0 -0.5 0.0 0.5
. . X(E}
Figure 1. Surface state existence curves for ¢; = —0.5 and labeled with
their values of p. Broken (solid) lines correspond to condition for surface
state above (below) the band. Large dots with p values in parentheses
correspond to curves plotted in Figures 2—4.

Multiplying (25) first by 8o™ and then by (yo™! — 8p™!), and
summing the results separately over the range 1 < m < =, leads

Figure 2. Surface density of states curve for p = 0.25, ¢, = 0.5, v =
0.75, and ¢ = 0.25 showing surface state below the band.

1.0 1.5

to two other linear equations in g(0), 2, and 2., i.e.,
Ag(0) + P2, - Py(Z,+ 1) =0 (28)
Bg(0) + 0,3, + (3, + 1) = 1 29 3
where '
A = P,C - BypMo)(1 - po)!
B = QT (0)C - YMa) (1 - o)™ = B(1 - po)™'] =8
C = BT\(p) = vTy(0) + BTp) — (& — € (30) s°
Py =1+ T\(p)P,, P, = {pBT(p)
0, = (T(p)[¥T(0) - BT1(p)], Q2 =1-0,T(p)
Equations 21, 28, and 29 can now be solved by Cramer’s rule to ﬁ-
give the surface GF
s -1
g0)=a,a" =4, 4 ol 31)
- A
where E T T
2.5 -2.0
A = rf‘:(p), :%;(0)

(32)
Proceeding further, the SS energies X; are given by the zeros

of Ain (31). We shall, without loss of generality, fix the zero
and scale of energy be setting ¢ = 0 and 8 = 0.5, so the existence
conditions then become

2y 1f 1o 1 1 F o)1 - 62
Y ;2 1Fp el);(1=Fp)

(33)
where the upper (lower) sign refers to a SS above (below) the

(1 - po)?

band. When p = ¢ = 0, (33) reduces to the localized state
condition of Lavis et al.

13

1 T T T T T
-1, -1.0 -0.5 0.0 0.5 1.0 1.5
X(E)

at upper band edge.

20 2
Figure 3. Surface densityrof states curve for p = 0.5, ¢¢ = 0.5, v =
0.885, and ¢ = 0.6 showing surface state below the band and singularity

4, Results and Discussion

The inequality, eq 33, gives a lower bound on v for the existence
of SS. The lower bound curves are drawn in Figure 1 for ¢, =

-0.5, as functions of ¢, and labeled with their values of p. The
broken (solid) lines correspond to the condition for a SS to lie
above (below) the band. Thus, for a particular value of p, the

o plane is divided into various existence regions bounded by the

(7) Lavis, D. A,; Southern, B. W.; Davison, S. G. J. Phys. C. 1985, 18,
87.
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Figure 4. Surface density of states curve for p = 0.75, ¢, = 0.5, v =
0.5, and ¢ = 0.9 showing surface states above and below the band.

curves corresponding to that value of p.

From (12) and (31), the SDOS can be computed numerically.
The results obtained are shown in Figures 2—4 for the parametric
values corresponding to the three large dots identified in Figure

1 by the p values shown in parentheses. Figure 2 depicts the SDOS
curve for the first dot at p = 0.25, ¢, =-0.5,y = 0.75,and ¢ =
0.25. The SS below the lower band edge is located by including
a small imaginary part in the energy E in this range. The &-
function singularity then becomes a narrow Gaussian curve. The
graph of Figure 3 shows the SDOS for the second dot at p = 0.5,
¢ = 0.5,y = 0.885, and ¢ = 0.6. Here the SS below the lower
band edge is accompanied by a singularity at the upper band edge.
In the case of Figure 4, for the third dot at p = 0.75, ¢, = 0.5,
v = 0.5, and ¢ = 0.9, a SS occurs on both sides of the band.
Comparing Figures 24, an increase in the bandwidth is observed,
together with a shift to higher values of X(E). Moreover, the
emergence of the SS from the upper band edge distorts the band
SDOS in this region.

5. Conclusion

The SDOS of a semiinfinite monoatomic chain of atoms has
been studied, within the context of the MNA, by using the Dyson
equation approach. A detailed analysis of the SS existence
conditions was undertaken and related to the structure of the
SDOS curves. As is apparent from the results and discussion
presented in the previous section, the inclusion of higher order
interactions has a marked effect on the SDOS. Finally, it should
be noted that, while the treatment described here has been con-
cerned with 1-dimensional crystals, the findings are also valid for
long-chain polyenes.
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Dynamics of Micellar Solutions of Ionic Surfactants by Fluorescence Probing
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Photophysical evidence is presented indicating that in aqueous solutions of ionic surfactants, under appropriate conditions
of the nature of the surfactant, surfactant concentration, and ionic strength, fast intermicellar exchange of micelle-solubilized
pyrene or cetylpyridinium jon can occur on a time scale of 0.3~10 us. Furthermore it is shown that this process is not the
result of micellar collisions as it is known to be the case in water-in-0il microemulsions. On the basis of the results, it is
proposed that the observed intermicellar migration is due to fragmentation of the micelles into submicellar aggregates or
fragments. One of the fragments carrying the solubilizate subsequently associates with a micelle (coagulation). Successive
fragmentation/coagulation reactions result in solubilizate migration. This mechanism permits us to explain all of our experimental
results. The relationship between the results of the present investigation and of previous chemical relaxation studies is discussed.

Introduction

Time-resolved ﬂ_uoregcence quenching of micelle-solubilized
fluorescent probes by appropriate quenchers has found wide ap-
plications during the past decade! in determining the dynamic

other hand, the numerous quenchers available can be classified
into two main categories according to the relationship between
their residence time in a micelle and the unquenched fluorescence

(1) Singer, L. A. In “Solution Behavior of Surfactants”, Mittal, K. L.,

behavior and characteristic parameters of aqueous micelles,2?
alcohol swollen micelles,*S microemulsions,” etc. A typical
fluorescent probe, systematically employed for such studies, is
pyrene (P) because of its very low solubility in water and its
exceptionally small fluorescence decay rate constant k.6 On the

*NRC “Demokritos”.
YICS (CRM-EAHP) and Gréco Microémulsion.

Fendler, E., Eds.; Plenum Press;: New York, 1982; Vol. [, p 73.

(2) Lianos, P.; Lang, J.; Zana, R. J. Colloid Interface Sci. 1983, 91, 276,
and references therein.
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